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Abstract

Most present day color scanners, with red, green, and b
filters, are non-colorimetric. This means that their outpu
cannot be linearly transformed into CIE tristimulus valu
for arbitrary input materials. On the other hand, b
restricting oneself to a single class of inputs such 
photographic, lithographic, or xerographic materials, ve
accurate scanner calibrations are possible. In this paper
conjecture that such accurate calibrations can be achieve
the input document is made with only "three colorants", i.
has only three independent degrees of freedom. The vali
of the above conjecture is tested experimentally using
CMYK (four colorant) printer. Usually in CMYK printing,
there are only three fundamental degrees of freedom. E
though four colorants are used, the amounts of th
colorants are inter-related through the method used 
undercolor removal (UCR). The fourth degree of freedom
re-introduced when the method of undercolor removal
varied. To test the above conjecture concerning "degree
freedom", we evaluated the impact of different UC
methods on scanner calibration accuracy. The paper 
proposes an analytic similarity measure for comparing co
spectra from different media, which is shown to be in fa
agreement with the experimental results.

Media Dependence of Scanner Calibration

Color scanner calibration is important for obtaining devi
independent color. The calibration transformation conve
the scanner RGB values into corresponding measured c
values, expressed as CIE XYZ tristimuli or derivative
thereof. If the scanner spectral sensitivities can be linea
transformed into the CIE XYZ color matching functions, th
same linear transformation converts scanner measurem
to CIE XYZ trisitmuli and can therefore be used fo
calibration1,2. Sensitivities of actual scanners devia
significantly from this ideal "colorimetric" requirement an
therefore, an empirical approach is more common in scan
calibration. Typically, a calibration target with several colo
patches is scanned and a transformation is determined 
(approximately) converts the scanner RGB values in
corresponding color values for each patch (which a
measured independently with a spectrophotomet
colorimeter). Several calibration transformations have be
reported in literature including 3x3 linear matrices, highe
order polynomials, look-up tables, and Neural-Netwo
based methods3-7.

The calibration transformation is applied to scann
images to obtain device independent color representati
of these images. Usually, the calibration transformation
most accurate for input images on a medium (e.
photographic, lithographic, xerographic, inkjet, etc
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identical to the target material and the performance ov
other materials (cross-tests) with different spectra
characteristics is poorer. This is especially true of the no
linear calibration transformations that often give excellen
color accuracy for a single input material but do not perform
significantly better than linear transformations in cross
tests3. An example of this dependence is shown in Table 
for a Neural Network based scanner calibration scheme. F
obtaining the data in this table, the scanner was calibrat
using three IT8.7 targets8 produced by different means: 1) a
photographic target, 2) a lithographic target, and 3) 
Xerographic target. Each row of the table corresponds to
different target used in the calibration and each colum
corresponds to a different target used for testing th
calibration. The first column of each row lists the
corresponding calibration target and the first row of eac
column lists the corresponding test target. The numbers 
the table are average CIELAB ∆E*

ab color errors that are
obtained in scanner calibration when the calibration targ
listed in that row is used for training the Neural Network
and the calibration is tested on the test target listed in th
column. Thus the diagonal entries represent self-tests a
the off diagonal entries represent cross-tests.

Test MediumCalibration
Medium Photographic Lithographic Xerographic
Photographic 0.95 4.14 3.83
Lithographic 4.32 0.78 1.90
Xerographic 3.97 1.82 1.11

Table 1: Self and Cross Test Calibration Errors for a
typical scanner.

Note that in Table 1, the off-diagonal entries are
significantly larger than the diagonal entries, indicating tha
the scanner calibrations produce significantly larger erro
across media than in a single medium.

In this paper, we hypothesize that the non-linea
transformation schemes for a single medium perform we
because these media are color reproductions with only thr
degrees of freedom in the input, corresponding to the thr
(subtractive) primaries used in the reproduction.

This conjecture is experimentally tested using a fou
colorant (CMYK) printer. Typically, even though CMYK
printers have four colorants, the amounts of these coloran
are determined from virtual amounts of CMY through
undercolor removal (UCR), thus yielding only three
independent degrees of freedom. However, the four
degree of freedom is re-introduced if the UCR method 
allowed to vary. Therefore, the impact of different UCR
methods on scanner calibration accuracy can be used
estimate the validity of the conjecture.
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Impact of UCR on Scanner Calibration

For all experiments described here, a UMAX 24-bit (30bit
internal) color scanner was used. Calibration and test targe
used were spectrally measured using a Gretag
spectrophotometer and CIELAB values under CIE D50
standard illumination were computed from these
measurements. For each calibration target chosen, the
scanner was calibrated by scanning in the calibration targe
and training a Neural Network to map from scanner red,
green, and blue (RGB) signals to CIELAB over
corresponding uniform patches in the target. In all cases, the
structure of the Neural Network was kept simple to preven
it from representing the noise in the data.

A xerographic printer was used to assess the impact of
different UCR methods on scanner calibration accuracy. In
the first experiment, two scanner calibration targets were
generated by sampling the CMY cube on a 6x6x6 uniform
grid and printing the resulting patches with two different
UCR methods. The first method used 0% UCR, i.e., printed
with only the CMY colorants and the second used a 100%
UCR that replaces the minimum of CMY with K and
subtracts the corresponding amounts from CMY. The two
printed targets were then used to train two independent
Neural Networks for scanner calibration. The resulting
calibration transformation from the Neural Networks were
then applied to the scanned data from both targets to obtain
scanner (calibrated) CIELAB values. Thus for each Neura
Network, two sets of Lab values were obtained: one
corresponding to the target that was used in training the
network (self-test) and the second corresponding to other
target (cross-test). The self/cross test scanner CIEL
values were compared against the original measured values
(for the corresponding targets) by computing CIELAB ∆Eab

*

color differences. The results of these self and cross tests are
shown in Table 2.

Avg. ∆E*

ab/Max. ∆E*

ab

Test TargetCalibration Target
0% UCR 100% UCR

0% UCR 1.18/3.48 3.78/10.53
100% UCR 3.46/13.81 1.22/4.35

Table 2: Self and Cross Calibration Errors for the 0 and
100 percent UCR Targets generated by sampling CMY cube

Note that, just as in Table 1,  the cross-calibration errors
in Table 2 are significantly larger than the self-calibration
errors. This suggests that if the scanner is color-calibra
for scanning prints from a given CMYK printer, the scanner
calibration depends significantly on the UCR method used
in the printer.  Thus color-calibrated scans of prints could
have large color errors if they used a different UCR strategy
from that used in printing the calibration target. Also 
single calibration will not be very accurate for scanning the
output of a CMYK printer if the UCR strategy is allowed to
vary. If we compare the magnitude of the numbers in Table
2 with those in Table 1, we can see that the cross-test erro
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are comparable. Thus the change in the UCR method could
result in errors comparable to those encountered with
change in the medium.

A further analysis of the data shows that as the amoun
of black (K) colorant or toner increases, the color
differences due to cross scanner calibration increase. The
results of such a comparison are shown in Table 3, where
the results of Table 2 are partitioned into a number of
different cases based on the amount of black (K) colorant
used. It can be seen that for self calibration, the average
errors remain around 1 ∆E*ab with increasing amounts of
black colorant. But with the cross calibration, the averag
errors increase with increasing amount of black colorant.
From this we can deduce that as the UCR is changed t
amount of black changes thereby producing the difference
in calibration. From Table 3, comparing only the average
errors produced in the cross calibration, it can be seen that
with 0 digital counts of black, these errors are of the same
magnitude as self calibration errors, but with higher
amounts of black the cross calibration errors increase
significantly in relation to the self calibration errors.

K AmountTrain/Test
UCR 0 43 51 86 100
0/0 1.15 0.98 1.17 0.95 1.39
100/100 1.28 1.20 1.05 0.98 1.31
0/100 1.31 2.65 5.78 5.19 7.77
100/0 1.52 2.47 4.22 4.08 7.33

Table 3: The average ∆E*ab errors for all the four tests
(self and cross calibration)  for varying amounts of black

colorant
The experiment described above began with a sampling of
the device color space and considered the two extremes of
UCR (0 and 100 percent). In order to have a more realistic
estimate, the experiment was repeated with two changes.
Instead of generating the calibration targets by sampling th
CMY cube, the standard IT8.7 scanner calibration target
was used and instead of the 100% UCR removal case we
used a UCR strategy similar to lithographic printing tha
smoothly replaces CMY with K as one gets closer to neutral
axis. The IT8.7 target was printed using the two different
UCR methods and the self and cross tests were repeated.
Once again, the calibration errors for the self and cross tes
were determined in CIELAB ∆Eab

* units. These numbers are
tabulated in Table 4. The errors follow the same trend as
those in Table 2, with the cross-tests yielding much higher
errors than the self tests and the magnitudes of the numbers
are consistent with Table 2.

Avg. ∆E*

ab/Max. ∆E*

ab

Test TargetCalibration Target
0% UCR Typical UCR

0% UCR 1.05/3.41 4.51/19.13
Typical UCR 3.92/11.53 1.16/2.93

Table 4: Self and Cross Calibration Errors for the 0 and
typical UCR IT8.7 Targets
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Spectral Similarity Measure

Different input media require different calibration
transformations because of their differing spectral
characteristics. Hence, a quantitative measure of "spectral
similarity" between different media is useful for assessing
the differences between different media types and its
potential impact on scanner metamerism. One such measure
that has been proposed earlier is the correlation coefficient
between spectra of the corresponding colorants3. Here, we
extend this to a more general measure that directly measures
the similarity of spectral data-sets, without requiring that the
colorants be equal in number and of similar type. The
mathematical development of such a measure is given in the
appendix. In this section, we consider the use of such a
measure in comparing different media and discuss its
limitations.

To test the usefulness of the spectral similarity measure,
the measure was computed for the targets used in generating
Table 1. The resulting similarity measures are given in
Table 5, in the same format as Table 1. Note that these
spectral similarity measures are in good agreement with th
average errors listed in Table 1. The spectral similarity
measures suggest that the lithographic and xerographic test
targets are most similar and among the two, the xerographic
target is closer to the photographic than the lithographic.
The same conclusions can be drawn from Table 1.

Medium IIMedium I
Photographic Lithographic Xerographic

Photographic 1.0000 0.9750 0.9820
Lithographic 0.9750 1.0000 0.9886
Xerographic 0.9820 0.9886 1.0000

Table 5: Spectral Similarity measures ( ρ ) corresponding to
Table 1.

Note that the spectral similarity measure considers the
similarity of the complete spectral characteristics and
therefore only hints at potential problems. For instance, for
a completely colorimetric scanner, the errors in Table 1,
would all be negligible with diagonal and off-diagonal terms
having similar magnitude. Nonetheless, the spectral
similarity measure is useful in comparing different materials
in the absence of any knowledge of the scanners spectral
characteristics.

The similarity measure was also applied to the
evaluation of similarity of reflectance spectra from targets
using different UCR methods. The data from the first
experiment of the last section was used. In order to observe
any impact on the similarity of spectra with the introduction
of black colorant, the data from the 100% UCR target was
partitioned into separate sets based on the amount of bl
(K), just as in Table 3. The similarity ρ  between the
different spectral datasets corresponding to the third row of
table 3, was then calculated. The resulting values of ρ  were
0.9997, 0.9899, 0.9579, 0.9938, and 0.9814. While these
values are not in perfect correlation with those in table 3,
they are in rough agreement with those values and follow a
similar trend.
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Conclusion

Since most present day scanners are non-colorimetric, one
would inherently expect them to produce large color errors.
That one does not get large color errors is due to the lack of
"richness" of input, i.e., common scanner inputs have
similar spectral characteristics. In the limiting case, when
input is itself a color reproduction with only three
independent degrees of freedom, extremely accurate
calibration is feasible. However, such a calibration i
sensitive to variation in the spectral characteristics of input
materials.

In this paper, we demonstrate that a significant increase
in scanner color-calibration error is possible if the input is
not constrained to having only three degrees of freedom.
The experiment focussed on using a four colorant CMYK
printer for generating the scanner input and varying the
method used for undercolor removal (UCR). The results
indicate that if a scanner is calibrated for scanning prints
from a CMYK printer, a simple change in the UCR  method
can lead to a substantial increase in calibration errors.
Similar results can probably be anticipated for the scanning
of output from hi-fi printers.

The paper also proposes a numerical measure for
evaluating the spectral similarity of different media. The
similarity measure is shown to have fair agreement with the
cross-media calibration error for a typical (non-colorimetric)
scanner. Note that the conclusions in this paper would not
apply to a truly colorimetric scanner, which would have no
dependency what-so-ever on the input medium.

Appendix: A Spectral Similarity Measure

Let R1 = [r 1

1, r
1

2, … r 1

N] and R2 = [r 2

1, r
2

2, … r 2

N] represent
data-sets of reflectance vectors (with the columns of these
matrices representing different color spectra).  Let the
SVD's of these matrices  be  given by,

T
111

1 VUR Σ=   and 
T

222
2 VUR Σ= ,

where U1, U2, V1, V2 are matrices with orthonormal columns
and Σ1 and  Σ2 are square diagonal matrices with their
diagonal entries in decreasing order. Then the columns of U1
represent an orthonormal basis set for the reflectances in R1

with their relative energies in the diagonal elements of  Σ1

and the columns of U2  represent an orthonormal basis set
for the reflectances in R2 with their relative energies in the
diagonal elements of Σ2. The columns of U1 are the
"principal components" of R1 in decreasing order of
significance and the columns of U2 are the "principal
components" of R2  in decreasing order of significance.

A similarity measure between the media may be
defined by considering "how similar" the first few principal
components are. Since the similarity of the media does not
change drastically if their significant principal components
are re-ordered the energy that is common between spaces
spanned by the significant principal components is a
3
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reasonable measure of the similarity. If
~U1and 2

~

U  denote

these significant principal components, the energy common

to the sub-spaces spanned by them is 
2

2

~

1

~

F

T UU , where

F
•  denotes the Frobenius norm. The limitation of such a

measure based on just the "significant" principal
components is that the definition of what constitutes
significant is arbitrary.  A better alternative is to weight the
energy according to the strength of the principal
components and to use all principal components.
Introducing this weighting, we get a measure of similarity

2)2/1(
22

)2/1(
11

2)2/1(
221

)2/1(
1 )()()(

F

T

F

T ΣΣ=ΣΣ UUUU

Normalizing this appropriately, a measure of the similarity
for spectral data sets can be obtained as

2)2/1(
2

)2/1(
1

2)2/1(
22

)2/1(
11 )()(

FF

T ΣΣΣΣ= UUρ
It can be shown that the above measure is bounded between
0 and 1 with 1 indicating that the data-sets are close and 0
that they are very different (orthogonal)9.
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